MakeItFrom.com
Menu (ESC)

EN 2.4680 Cast Nickel vs. EN AC-47100 Aluminum

EN 2.4680 cast nickel belongs to the nickel alloys classification, while EN AC-47100 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4680 cast nickel and the bottom bar is EN AC-47100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 9.1
1.1
Fatigue Strength, MPa 120
110
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 600
270
Tensile Strength: Yield (Proof), MPa 260
160

Thermal Properties

Latent Heat of Fusion, J/g 350
570
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1360
590
Melting Onset (Solidus), °C 1320
560
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 15
21

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 9.1
7.6
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 350
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 160
170
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 21
28
Strength to Weight: Bending, points 20
35
Thermal Diffusivity, mm2/s 3.7
54
Thermal Shock Resistance, points 14
12

Alloy Composition

Aluminum (Al), % 0
81.4 to 88.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0 to 0.1
Copper (Cu), % 0
0.7 to 1.2
Iron (Fe), % 0 to 1.0
0 to 1.3
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 0.5
0 to 0.55
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 42.9 to 51
0 to 0.3
Niobium (Nb), % 1.0 to 1.8
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
10.5 to 13.5
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25