MakeItFrom.com
Menu (ESC)

EN 2.4680 Cast Nickel vs. C86700 Bronze

EN 2.4680 cast nickel belongs to the nickel alloys classification, while C86700 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4680 cast nickel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 9.1
17
Poisson's Ratio 0.26
0.31
Shear Modulus, GPa 84
41
Tensile Strength: Ultimate (UTS), MPa 600
630
Tensile Strength: Yield (Proof), MPa 260
250

Thermal Properties

Latent Heat of Fusion, J/g 350
180
Maximum Temperature: Mechanical, °C 1050
130
Melting Completion (Liquidus), °C 1360
880
Melting Onset (Solidus), °C 1320
860
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 14
89
Thermal Expansion, µm/m-K 15
20

Otherwise Unclassified Properties

Base Metal Price, % relative 60
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 9.1
2.9
Embodied Energy, MJ/kg 130
49
Embodied Water, L/kg 350
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45
86
Resilience: Unit (Modulus of Resilience), kJ/m3 160
290
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 3.7
28
Thermal Shock Resistance, points 14
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 0 to 1.0
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 0.5
1.0 to 3.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 42.9 to 51
0 to 1.0
Niobium (Nb), % 1.0 to 1.8
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0