MakeItFrom.com
Menu (ESC)

EN 2.4815 Cast Nickel vs. C17500 Copper

EN 2.4815 cast nickel belongs to the nickel alloys classification, while C17500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4815 cast nickel and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 3.4
6.0 to 30
Fatigue Strength, MPa 89
170 to 310
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
45
Tensile Strength: Ultimate (UTS), MPa 460
310 to 860
Tensile Strength: Yield (Proof), MPa 220
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1510
1060
Melting Onset (Solidus), °C 1450
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 25
200
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 47
60
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 7.9
4.7
Embodied Energy, MJ/kg 110
73
Embodied Water, L/kg 230
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 130
120 to 2390
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 15
9.7 to 27
Strength to Weight: Bending, points 16
11 to 23
Thermal Diffusivity, mm2/s 6.4
59
Thermal Shock Resistance, points 17
11 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 12 to 18
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 0
95.6 to 97.2
Iron (Fe), % 9.8 to 28.7
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 58 to 66
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5