MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. 206.0 Aluminum

EN 2.4816 nickel belongs to the nickel alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
8.4 to 12
Fatigue Strength, MPa 200
88 to 210
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Shear Strength, MPa 470
260
Tensile Strength: Ultimate (UTS), MPa 700
330 to 440
Tensile Strength: Yield (Proof), MPa 270
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1370
650
Melting Onset (Solidus), °C 1320
570
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
99

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 9.0
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 190
270 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 23
30 to 40
Strength to Weight: Bending, points 21
35 to 42
Thermal Diffusivity, mm2/s 3.8
46
Thermal Shock Resistance, points 20
17 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.3
93.3 to 95.3
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
4.2 to 5.0
Iron (Fe), % 6.0 to 10
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Nickel (Ni), % 72 to 80
0 to 0.050
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.3
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15