MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. 332.0 Aluminum

EN 2.4816 nickel belongs to the nickel alloys classification, while 332.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
110
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 34
1.0
Fatigue Strength, MPa 200
90
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Shear Strength, MPa 470
190
Tensile Strength: Ultimate (UTS), MPa 700
250
Tensile Strength: Yield (Proof), MPa 270
190

Thermal Properties

Latent Heat of Fusion, J/g 310
530
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1370
580
Melting Onset (Solidus), °C 1320
530
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
84

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.0
7.8
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 260
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 190
250
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
31
Thermal Diffusivity, mm2/s 3.8
42
Thermal Shock Resistance, points 20
12

Alloy Composition

Aluminum (Al), % 0 to 0.3
80.1 to 89
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
2.0 to 4.0
Iron (Fe), % 6.0 to 10
0 to 1.2
Magnesium (Mg), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 72 to 80
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
8.5 to 10.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.3
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5