MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. 4007 Aluminum

EN 2.4816 nickel belongs to the nickel alloys classification, while 4007 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
32 to 44
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
5.1 to 23
Fatigue Strength, MPa 200
46 to 88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Shear Strength, MPa 470
80 to 90
Tensile Strength: Ultimate (UTS), MPa 700
130 to 160
Tensile Strength: Yield (Proof), MPa 270
50 to 120

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1370
650
Melting Onset (Solidus), °C 1320
590
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 15
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
42
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.0
8.1
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
7.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 190
18 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 23
12 to 15
Strength to Weight: Bending, points 21
20 to 23
Thermal Diffusivity, mm2/s 3.8
67
Thermal Shock Resistance, points 20
5.5 to 6.7

Alloy Composition

Aluminum (Al), % 0 to 0.3
94.1 to 97.6
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 6.0 to 10
0.4 to 1.0
Magnesium (Mg), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Nickel (Ni), % 72 to 80
0.15 to 0.7
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
1.0 to 1.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.3
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15