MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. A356.0 Aluminum

EN 2.4816 nickel belongs to the nickel alloys classification, while A356.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 34
3.0 to 6.0
Fatigue Strength, MPa 200
50 to 90
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 700
160 to 270
Tensile Strength: Yield (Proof), MPa 270
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 310
500
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1370
610
Melting Onset (Solidus), °C 1320
570
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 9.0
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 190
49 to 300
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 23
17 to 29
Strength to Weight: Bending, points 21
25 to 36
Thermal Diffusivity, mm2/s 3.8
64
Thermal Shock Resistance, points 20
7.6 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.3
91.1 to 93.3
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 6.0 to 10
0 to 0.2
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 72 to 80
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.3
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15