MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. AISI 317LM Stainless Steel

EN 2.4816 nickel belongs to the nickel alloys classification, while AISI 317LM stainless steel belongs to the iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is AISI 317LM stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
46
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
79
Shear Strength, MPa 470
410
Tensile Strength: Ultimate (UTS), MPa 700
590
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Mechanical, °C 1150
300
Melting Completion (Liquidus), °C 1370
1460
Melting Onset (Solidus), °C 1320
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 55
24
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 9.0
4.8
Embodied Energy, MJ/kg 130
65
Embodied Water, L/kg 260
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
210
Resilience: Unit (Modulus of Resilience), kJ/m3 190
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 3.8
3.8
Thermal Shock Resistance, points 20
13

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.050 to 0.1
0 to 0.030
Chromium (Cr), % 14 to 17
18 to 20
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 6.0 to 10
54.4 to 64.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 72 to 80
13.5 to 17.5
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.3
0