MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. AWS BNi-6

Both EN 2.4816 nickel and AWS BNi-6 are nickel alloys. They have 76% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is AWS BNi-6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
160
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
62
Tensile Strength: Ultimate (UTS), MPa 700
450

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Melting Completion (Liquidus), °C 1370
880
Melting Onset (Solidus), °C 1320
880
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 13
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 55
55
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 9.0
9.4
Embodied Energy, MJ/kg 130
130
Embodied Water, L/kg 260
210

Common Calculations

Stiffness to Weight: Axial, points 13
11
Stiffness to Weight: Bending, points 23
22
Strength to Weight: Axial, points 23
15
Strength to Weight: Bending, points 21
16
Thermal Shock Resistance, points 20
20

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.050
Carbon (C), % 0.050 to 0.1
0 to 0.060
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 6.0 to 10
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
87.2 to 90
Phosphorus (P), % 0 to 0.020
10 to 12
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0 to 0.3
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5