MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. AWS E320

EN 2.4816 nickel belongs to the nickel alloys classification, while AWS E320 belongs to the iron alloys. They have 59% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Tensile Strength: Ultimate (UTS), MPa 700
620

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Melting Completion (Liquidus), °C 1370
1410
Melting Onset (Solidus), °C 1320
1360
Specific Heat Capacity, J/kg-K 460
460
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 55
38
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 9.0
6.5
Embodied Energy, MJ/kg 130
91
Embodied Water, L/kg 260
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 21
20
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.050 to 0.1
0 to 0.070
Chromium (Cr), % 14 to 17
19 to 21
Copper (Cu), % 0 to 0.5
3.0 to 4.0
Iron (Fe), % 6.0 to 10
31.8 to 43.5
Manganese (Mn), % 0 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 72 to 80
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.3
0