MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. EN 1.4162 Stainless Steel

EN 2.4816 nickel belongs to the nickel alloys classification, while EN 1.4162 stainless steel belongs to the iron alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is EN 1.4162 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
32
Fatigue Strength, MPa 200
410
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
78
Shear Strength, MPa 470
520
Tensile Strength: Ultimate (UTS), MPa 700
780
Tensile Strength: Yield (Proof), MPa 270
520

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Mechanical, °C 1150
1000
Melting Completion (Liquidus), °C 1370
1420
Melting Onset (Solidus), °C 1320
1370
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
12
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.6
Embodied Energy, MJ/kg 130
38
Embodied Water, L/kg 260
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
220
Resilience: Unit (Modulus of Resilience), kJ/m3 190
690
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 23
28
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 3.8
4.0
Thermal Shock Resistance, points 20
21

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.050 to 0.1
0 to 0.040
Chromium (Cr), % 14 to 17
21 to 22
Copper (Cu), % 0 to 0.5
0.1 to 0.8
Iron (Fe), % 6.0 to 10
67.2 to 73.3
Manganese (Mn), % 0 to 1.0
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.8
Nickel (Ni), % 72 to 80
1.4 to 1.9
Nitrogen (N), % 0
0.2 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.3
0