MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. EN 1.4578 Stainless Steel

EN 2.4816 nickel belongs to the nickel alloys classification, while EN 1.4578 stainless steel belongs to the iron alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is EN 1.4578 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
51
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 470
400
Tensile Strength: Ultimate (UTS), MPa 700
550
Tensile Strength: Yield (Proof), MPa 270
200

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Mechanical, °C 1150
930
Melting Completion (Liquidus), °C 1370
1430
Melting Onset (Solidus), °C 1320
1390
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 55
19
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 9.0
3.7
Embodied Energy, MJ/kg 130
51
Embodied Water, L/kg 260
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
220
Resilience: Unit (Modulus of Resilience), kJ/m3 190
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 3.8
3.9
Thermal Shock Resistance, points 20
12

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.050 to 0.1
0 to 0.040
Chromium (Cr), % 14 to 17
16.5 to 17.5
Copper (Cu), % 0 to 0.5
3.0 to 3.5
Iron (Fe), % 6.0 to 10
62.3 to 68.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 72 to 80
10 to 11
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.3
0