MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. EN 1.4630 Stainless Steel

EN 2.4816 nickel belongs to the nickel alloys classification, while EN 1.4630 stainless steel belongs to the iron alloys. They have a modest 24% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 34
23
Fatigue Strength, MPa 200
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 470
300
Tensile Strength: Ultimate (UTS), MPa 700
480
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Mechanical, °C 1150
800
Melting Completion (Liquidus), °C 1370
1440
Melting Onset (Solidus), °C 1320
1390
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.5
Embodied Energy, MJ/kg 130
36
Embodied Water, L/kg 260
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
92
Resilience: Unit (Modulus of Resilience), kJ/m3 190
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 3.8
7.5
Thermal Shock Resistance, points 20
17

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 1.5
Carbon (C), % 0.050 to 0.1
0 to 0.030
Chromium (Cr), % 14 to 17
13 to 16
Copper (Cu), % 0 to 0.5
0 to 0.5
Iron (Fe), % 6.0 to 10
77.1 to 86.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 72 to 80
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.5
0.2 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0 to 0.3
0.15 to 0.8