MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. EN AC-43400 Aluminum

EN 2.4816 nickel belongs to the nickel alloys classification, while EN AC-43400 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
80
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 200
110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 700
270
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 310
540
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1370
600
Melting Onset (Solidus), °C 1320
590
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 9.0
7.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 190
180
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 23
29
Strength to Weight: Bending, points 21
36
Thermal Diffusivity, mm2/s 3.8
59
Thermal Shock Resistance, points 20
12

Alloy Composition

Aluminum (Al), % 0 to 0.3
86 to 90.8
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 6.0 to 10
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 72 to 80
0 to 0.15
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
9.0 to 11
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.3
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15