MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. C19200 Copper

EN 2.4816 nickel belongs to the nickel alloys classification, while C19200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 34
2.0 to 35
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Shear Strength, MPa 470
190 to 300
Tensile Strength: Ultimate (UTS), MPa 700
280 to 530
Tensile Strength: Yield (Proof), MPa 270
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1150
200
Melting Completion (Liquidus), °C 1370
1080
Melting Onset (Solidus), °C 1320
1080
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 15
240
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 55
30
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 9.0
2.6
Embodied Energy, MJ/kg 130
41
Embodied Water, L/kg 260
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 190
42 to 1120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
8.8 to 17
Strength to Weight: Bending, points 21
11 to 16
Thermal Diffusivity, mm2/s 3.8
69
Thermal Shock Resistance, points 20
10 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
98.5 to 99.19
Iron (Fe), % 6.0 to 10
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
0
Phosphorus (P), % 0 to 0.020
0.010 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.3
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2