MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. C41300 Brass

EN 2.4816 nickel belongs to the nickel alloys classification, while C41300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
2.0 to 44
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Shear Strength, MPa 470
230 to 370
Tensile Strength: Ultimate (UTS), MPa 700
300 to 630
Tensile Strength: Yield (Proof), MPa 270
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1150
180
Melting Completion (Liquidus), °C 1370
1040
Melting Onset (Solidus), °C 1320
1010
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
31

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 9.0
2.7
Embodied Energy, MJ/kg 130
44
Embodied Water, L/kg 260
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
69 to 1440
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
9.6 to 20
Strength to Weight: Bending, points 21
11 to 19
Thermal Diffusivity, mm2/s 3.8
40
Thermal Shock Resistance, points 20
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
89 to 93
Iron (Fe), % 6.0 to 10
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0 to 0.3
0
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5