MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. C41500 Brass

EN 2.4816 nickel belongs to the nickel alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
2.0 to 42
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Shear Strength, MPa 470
220 to 360
Tensile Strength: Ultimate (UTS), MPa 700
340 to 560
Tensile Strength: Yield (Proof), MPa 270
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1150
180
Melting Completion (Liquidus), °C 1370
1030
Melting Onset (Solidus), °C 1320
1010
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
29

Otherwise Unclassified Properties

Base Metal Price, % relative 55
30
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 9.0
2.8
Embodied Energy, MJ/kg 130
45
Embodied Water, L/kg 260
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
160 to 1340
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
11 to 18
Strength to Weight: Bending, points 21
12 to 17
Thermal Diffusivity, mm2/s 3.8
37
Thermal Shock Resistance, points 20
12 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
89 to 93
Iron (Fe), % 6.0 to 10
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 2.2
Titanium (Ti), % 0 to 0.3
0
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5