MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. C49300 Brass

EN 2.4816 nickel belongs to the nickel alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 34
4.5 to 20
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
40
Shear Strength, MPa 470
270 to 290
Tensile Strength: Ultimate (UTS), MPa 700
430 to 520
Tensile Strength: Yield (Proof), MPa 270
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1150
120
Melting Completion (Liquidus), °C 1370
880
Melting Onset (Solidus), °C 1320
840
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 15
88
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
17

Otherwise Unclassified Properties

Base Metal Price, % relative 55
26
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 9.0
3.0
Embodied Energy, MJ/kg 130
50
Embodied Water, L/kg 260
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 190
220 to 800
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 23
15 to 18
Strength to Weight: Bending, points 21
16 to 18
Thermal Diffusivity, mm2/s 3.8
29
Thermal Shock Resistance, points 20
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
58 to 62
Iron (Fe), % 6.0 to 10
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.030
Nickel (Ni), % 72 to 80
0 to 1.5
Phosphorus (P), % 0 to 0.020
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.0 to 1.8
Titanium (Ti), % 0 to 0.3
0
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5