MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. C51100 Bronze

EN 2.4816 nickel belongs to the nickel alloys classification, while C51100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
2.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
42
Shear Strength, MPa 470
230 to 410
Tensile Strength: Ultimate (UTS), MPa 700
330 to 720
Tensile Strength: Yield (Proof), MPa 270
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1150
190
Melting Completion (Liquidus), °C 1370
1060
Melting Onset (Solidus), °C 1320
970
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 15
84
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
20

Otherwise Unclassified Properties

Base Metal Price, % relative 55
32
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 9.0
3.0
Embodied Energy, MJ/kg 130
48
Embodied Water, L/kg 260
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 190
38 to 2170
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
10 to 22
Strength to Weight: Bending, points 21
12 to 20
Thermal Diffusivity, mm2/s 3.8
25
Thermal Shock Resistance, points 20
12 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
93.8 to 96.5
Iron (Fe), % 6.0 to 10
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
0
Phosphorus (P), % 0 to 0.020
0.030 to 0.35
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
3.5 to 4.9
Titanium (Ti), % 0 to 0.3
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5