MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. C63200 Bronze

EN 2.4816 nickel belongs to the nickel alloys classification, while C63200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 34
17 to 18
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Shear Strength, MPa 470
390 to 440
Tensile Strength: Ultimate (UTS), MPa 700
640 to 710
Tensile Strength: Yield (Proof), MPa 270
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1150
230
Melting Completion (Liquidus), °C 1370
1060
Melting Onset (Solidus), °C 1320
1040
Specific Heat Capacity, J/kg-K 460
440
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 8.5
8.3
Embodied Carbon, kg CO2/kg material 9.0
3.4
Embodied Energy, MJ/kg 130
55
Embodied Water, L/kg 260
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 190
400 to 510
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 23
21 to 24
Strength to Weight: Bending, points 21
20 to 21
Thermal Diffusivity, mm2/s 3.8
9.6
Thermal Shock Resistance, points 20
22 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.3
8.7 to 9.5
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
78.8 to 82.6
Iron (Fe), % 6.0 to 10
3.5 to 4.3
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
1.2 to 2.0
Nickel (Ni), % 72 to 80
4.0 to 4.8
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.3
0
Residuals, % 0
0 to 0.5