MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. C93500 Bronze

EN 2.4816 nickel belongs to the nickel alloys classification, while C93500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is C93500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 34
15
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 74
38
Tensile Strength: Ultimate (UTS), MPa 700
220
Tensile Strength: Yield (Proof), MPa 270
110

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1370
1000
Melting Onset (Solidus), °C 1320
850
Specific Heat Capacity, J/kg-K 460
360
Thermal Conductivity, W/m-K 15
70
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
15

Otherwise Unclassified Properties

Base Metal Price, % relative 55
31
Density, g/cm3 8.5
9.0
Embodied Carbon, kg CO2/kg material 9.0
3.0
Embodied Energy, MJ/kg 130
49
Embodied Water, L/kg 260
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
28
Resilience: Unit (Modulus of Resilience), kJ/m3 190
59
Stiffness to Weight: Axial, points 13
6.3
Stiffness to Weight: Bending, points 23
17
Strength to Weight: Axial, points 23
6.9
Strength to Weight: Bending, points 21
9.1
Thermal Diffusivity, mm2/s 3.8
22
Thermal Shock Resistance, points 20
8.5

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
83 to 86
Iron (Fe), % 6.0 to 10
0 to 0.2
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
4.3 to 6.0
Titanium (Ti), % 0 to 0.3
0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 1.0