MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. K93603 Alloy

EN 2.4816 nickel belongs to the nickel alloys classification, while K93603 alloy belongs to the iron alloys. They have 45% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is K93603 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 74
72
Tensile Strength: Ultimate (UTS), MPa 700
490 to 810

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Melting Completion (Liquidus), °C 1370
1430
Melting Onset (Solidus), °C 1320
1380
Specific Heat Capacity, J/kg-K 460
460
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
25
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 9.0
4.8
Embodied Energy, MJ/kg 130
66
Embodied Water, L/kg 260
120

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
23
Strength to Weight: Axial, points 23
17 to 27
Strength to Weight: Bending, points 21
17 to 24
Thermal Shock Resistance, points 20
15 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.1
Carbon (C), % 0.050 to 0.1
0 to 0.050
Chromium (Cr), % 14 to 17
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 6.0 to 10
61.8 to 64
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.6
Nickel (Ni), % 72 to 80
36
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.3
0 to 0.1
Zirconium (Zr), % 0
0 to 0.1