MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. 2025 Aluminum

EN 2.4851 nickel belongs to the nickel alloys classification, while 2025 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
110
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 34
15
Fatigue Strength, MPa 170
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 430
240
Tensile Strength: Ultimate (UTS), MPa 650
400
Tensile Strength: Yield (Proof), MPa 230
260

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1200
190
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 49
10
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 8.1
7.9
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 280
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
55
Resilience: Unit (Modulus of Resilience), kJ/m3 130
450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 22
37
Strength to Weight: Bending, points 20
40
Thermal Diffusivity, mm2/s 2.9
58
Thermal Shock Resistance, points 17
18

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
90.9 to 95.2
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0 to 0.1
Copper (Cu), % 0 to 0.5
3.9 to 5.0
Iron (Fe), % 7.7 to 18
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.4 to 1.2
Nickel (Ni), % 58 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.5 to 1.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.5
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15