MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. 384.0 Aluminum

EN 2.4851 nickel belongs to the nickel alloys classification, while 384.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is 384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
85
Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 34
2.5
Fatigue Strength, MPa 170
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Shear Strength, MPa 430
200
Tensile Strength: Ultimate (UTS), MPa 650
330
Tensile Strength: Yield (Proof), MPa 230
170

Thermal Properties

Latent Heat of Fusion, J/g 320
550
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1360
580
Melting Onset (Solidus), °C 1310
530
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 11
96
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
69

Otherwise Unclassified Properties

Base Metal Price, % relative 49
11
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 8.1
7.4
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 280
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 130
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 20
37
Thermal Diffusivity, mm2/s 2.9
39
Thermal Shock Resistance, points 17
15

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
77.3 to 86.5
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
3.0 to 4.5
Iron (Fe), % 7.7 to 18
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 58 to 63
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
10.5 to 12
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5