MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. 520.0 Aluminum

EN 2.4851 nickel belongs to the nickel alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
75
Elastic (Young's, Tensile) Modulus, GPa 200
66
Elongation at Break, % 34
14
Fatigue Strength, MPa 170
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Shear Strength, MPa 430
230
Tensile Strength: Ultimate (UTS), MPa 650
330
Tensile Strength: Yield (Proof), MPa 230
170

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1360
600
Melting Onset (Solidus), °C 1310
480
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 11
87
Thermal Expansion, µm/m-K 14
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
21
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
72

Otherwise Unclassified Properties

Base Metal Price, % relative 49
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 8.1
9.8
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 280
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
39
Resilience: Unit (Modulus of Resilience), kJ/m3 130
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
52
Strength to Weight: Axial, points 22
35
Strength to Weight: Bending, points 20
41
Thermal Diffusivity, mm2/s 2.9
37
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
87.9 to 90.5
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
0 to 0.25
Iron (Fe), % 7.7 to 18
0 to 0.3
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 58 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.5
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15