MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. 535.0 Aluminum

EN 2.4851 nickel belongs to the nickel alloys classification, while 535.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
70
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 34
10
Fatigue Strength, MPa 170
70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Shear Strength, MPa 430
190
Tensile Strength: Ultimate (UTS), MPa 650
270
Tensile Strength: Yield (Proof), MPa 230
140

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1360
630
Melting Onset (Solidus), °C 1310
570
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 11
100
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
23
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
79

Otherwise Unclassified Properties

Base Metal Price, % relative 49
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 8.1
9.4
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 280
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
24
Resilience: Unit (Modulus of Resilience), kJ/m3 130
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22
28
Strength to Weight: Bending, points 20
35
Thermal Diffusivity, mm2/s 2.9
42
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0 to 0.0060
0 to 0.0050
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 7.7 to 18
0 to 0.15
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0 to 1.0
0.1 to 0.25
Nickel (Ni), % 58 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.5
0.1 to 0.25
Residuals, % 0
0 to 0.15