MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. C443.0 Aluminum

EN 2.4851 nickel belongs to the nickel alloys classification, while C443.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
65
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
9.0
Fatigue Strength, MPa 170
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 430
130
Tensile Strength: Ultimate (UTS), MPa 650
230
Tensile Strength: Yield (Proof), MPa 230
100

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1360
630
Melting Onset (Solidus), °C 1310
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 49
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 8.1
7.9
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 280
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
17
Resilience: Unit (Modulus of Resilience), kJ/m3 130
70
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 20
31
Thermal Diffusivity, mm2/s 2.9
58
Thermal Shock Resistance, points 17
10

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
89.6 to 95.5
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
0 to 0.6
Iron (Fe), % 7.7 to 18
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.35
Nickel (Ni), % 58 to 63
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25