MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. EN AC-51100 Aluminum

EN 2.4851 nickel belongs to the nickel alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
57
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
4.5
Fatigue Strength, MPa 170
58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 650
160
Tensile Strength: Yield (Proof), MPa 230
80

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 49
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.7
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 280
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 130
47
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 20
25
Thermal Diffusivity, mm2/s 2.9
53
Thermal Shock Resistance, points 17
7.3

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
94.5 to 97.5
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 7.7 to 18
0 to 0.55
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 1.0
0 to 0.45
Nickel (Ni), % 58 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.55
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.5
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15