MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. CC493K Bronze

EN 2.4851 nickel belongs to the nickel alloys classification, while CC493K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is CC493K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
74
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 650
270
Tensile Strength: Yield (Proof), MPa 230
140

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1200
160
Melting Completion (Liquidus), °C 1360
960
Melting Onset (Solidus), °C 1310
880
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 11
61
Thermal Expansion, µm/m-K 14
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 49
32
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 8.1
3.3
Embodied Energy, MJ/kg 120
53
Embodied Water, L/kg 280
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
33
Resilience: Unit (Modulus of Resilience), kJ/m3 130
89
Stiffness to Weight: Axial, points 13
6.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
8.6
Strength to Weight: Bending, points 20
11
Thermal Diffusivity, mm2/s 2.9
19
Thermal Shock Resistance, points 17
10

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
79 to 86
Iron (Fe), % 7.7 to 18
0 to 0.2
Lead (Pb), % 0
5.0 to 8.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 58 to 63
0 to 2.0
Phosphorus (P), % 0 to 0.020
0 to 0.1
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.1
Tin (Sn), % 0
5.2 to 8.0
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
2.0 to 5.0