MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. C85200 Brass

EN 2.4851 nickel belongs to the nickel alloys classification, while C85200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
28
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 650
270
Tensile Strength: Yield (Proof), MPa 230
95

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1200
140
Melting Completion (Liquidus), °C 1360
940
Melting Onset (Solidus), °C 1310
930
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 11
84
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
18
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
19

Otherwise Unclassified Properties

Base Metal Price, % relative 49
26
Density, g/cm3 8.2
8.4
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 120
46
Embodied Water, L/kg 280
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
59
Resilience: Unit (Modulus of Resilience), kJ/m3 130
42
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 22
8.9
Strength to Weight: Bending, points 20
11
Thermal Diffusivity, mm2/s 2.9
27
Thermal Shock Resistance, points 17
9.3

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
70 to 74
Iron (Fe), % 7.7 to 18
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 58 to 63
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
20 to 27
Residuals, % 0
0 to 0.9