MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. C92900 Bronze

EN 2.4851 nickel belongs to the nickel alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 650
350
Tensile Strength: Yield (Proof), MPa 230
190

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1360
1030
Melting Onset (Solidus), °C 1310
860
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 11
58
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 49
35
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 8.1
3.8
Embodied Energy, MJ/kg 120
61
Embodied Water, L/kg 280
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
27
Resilience: Unit (Modulus of Resilience), kJ/m3 130
170
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
11
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 2.9
18
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
82 to 86
Iron (Fe), % 7.7 to 18
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 58 to 63
2.8 to 4.0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7