MakeItFrom.com
Menu (ESC)

EN 2.4851 Nickel vs. C95820 Bronze

EN 2.4851 nickel belongs to the nickel alloys classification, while C95820 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4851 nickel and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 650
730
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1200
230
Melting Completion (Liquidus), °C 1360
1080
Melting Onset (Solidus), °C 1310
1020
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 11
38
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 49
29
Density, g/cm3 8.2
8.3
Embodied Carbon, kg CO2/kg material 8.1
3.5
Embodied Energy, MJ/kg 120
56
Embodied Water, L/kg 280
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
86
Resilience: Unit (Modulus of Resilience), kJ/m3 130
400
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 17
25

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
9.0 to 10
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 0.5
77.5 to 82.5
Iron (Fe), % 7.7 to 18
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 58 to 63
4.5 to 5.8
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8