MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. 3003 Aluminum

EN 2.4856 nickel belongs to the nickel alloys classification, while 3003 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is 3003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
28 to 65
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
1.1 to 28
Fatigue Strength, MPa 280
39 to 90
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 570
68 to 130
Tensile Strength: Ultimate (UTS), MPa 880
110 to 240
Tensile Strength: Yield (Proof), MPa 430
40 to 210

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1430
640
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 10
180
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
44
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.6
2.8
Embodied Carbon, kg CO2/kg material 14
8.1
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
0.95 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 440
11 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 28
11 to 24
Strength to Weight: Bending, points 24
18 to 30
Thermal Diffusivity, mm2/s 2.7
71
Thermal Shock Resistance, points 29
4.7 to 10

Alloy Composition

Aluminum (Al), % 0 to 0.4
96.8 to 99
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0.050 to 0.2
Iron (Fe), % 0 to 5.0
0 to 0.7
Manganese (Mn), % 0 to 0.5
1.0 to 1.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15