MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. 358.0 Aluminum

EN 2.4856 nickel belongs to the nickel alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 28
3.5 to 6.0
Fatigue Strength, MPa 280
100 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 570
300 to 320
Tensile Strength: Ultimate (UTS), MPa 880
350 to 370
Tensile Strength: Yield (Proof), MPa 430
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 330
520
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1480
600
Melting Onset (Solidus), °C 1430
560
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
36
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 80
19
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 14
8.7
Embodied Energy, MJ/kg 190
160
Embodied Water, L/kg 290
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 440
590 to 710
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 28
37 to 39
Strength to Weight: Bending, points 24
42 to 44
Thermal Diffusivity, mm2/s 2.7
63
Thermal Shock Resistance, points 29
16 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.4
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0 to 0.2
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 0 to 5.0
0 to 0.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.5
0 to 0.2
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
7.6 to 8.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0.1 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15