MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. 5154A Aluminum

EN 2.4856 nickel belongs to the nickel alloys classification, while 5154A aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
58 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 28
1.1 to 19
Fatigue Strength, MPa 280
83 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 570
140 to 210
Tensile Strength: Ultimate (UTS), MPa 880
230 to 370
Tensile Strength: Yield (Proof), MPa 430
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1000
190
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1430
600
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 10
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 14
8.8
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 440
68 to 760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 28
24 to 38
Strength to Weight: Bending, points 24
31 to 43
Thermal Diffusivity, mm2/s 2.7
53
Thermal Shock Resistance, points 29
10 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.4
93.7 to 96.9
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0 to 0.25
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 0 to 5.0
0 to 0.5
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15