MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. 5457 Aluminum

EN 2.4856 nickel belongs to the nickel alloys classification, while 5457 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is 5457 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
32 to 55
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 28
6.0 to 22
Fatigue Strength, MPa 280
55 to 98
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 570
85 to 130
Tensile Strength: Ultimate (UTS), MPa 880
130 to 210
Tensile Strength: Yield (Proof), MPa 430
50 to 190

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1480
660
Melting Onset (Solidus), °C 1430
630
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 10
180
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
46
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
150

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 14
8.4
Embodied Energy, MJ/kg 190
160
Embodied Water, L/kg 290
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 440
18 to 250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 28
13 to 21
Strength to Weight: Bending, points 24
21 to 28
Thermal Diffusivity, mm2/s 2.7
72
Thermal Shock Resistance, points 29
5.7 to 9.0

Alloy Composition

Aluminum (Al), % 0 to 0.4
97.8 to 99.05
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 0 to 5.0
0 to 0.1
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.5
0.15 to 0.45
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.080
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1