MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. 7005 Aluminum

EN 2.4856 nickel belongs to the nickel alloys classification, while 7005 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is 7005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
10 to 20
Fatigue Strength, MPa 280
100 to 190
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 570
120 to 230
Tensile Strength: Ultimate (UTS), MPa 880
200 to 400
Tensile Strength: Yield (Proof), MPa 430
95 to 350

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1430
610
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 10
140 to 170
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
35 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
110 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.6
2.9
Embodied Carbon, kg CO2/kg material 14
8.3
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
32 to 57
Resilience: Unit (Modulus of Resilience), kJ/m3 440
65 to 850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 28
19 to 38
Strength to Weight: Bending, points 24
26 to 41
Thermal Diffusivity, mm2/s 2.7
54 to 65
Thermal Shock Resistance, points 29
8.7 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.4
91 to 94.7
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0.060 to 0.2
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 0 to 5.0
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.8
Manganese (Mn), % 0 to 0.5
0.2 to 0.7
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0.010 to 0.060
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0
0 to 0.15