MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. AISI 301L Stainless Steel

EN 2.4856 nickel belongs to the nickel alloys classification, while AISI 301L stainless steel belongs to the iron alloys. They have a modest 27% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
22 to 50
Fatigue Strength, MPa 280
240 to 530
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
77
Shear Strength, MPa 570
440 to 660
Tensile Strength: Ultimate (UTS), MPa 880
620 to 1040
Tensile Strength: Yield (Proof), MPa 430
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 1000
890
Melting Completion (Liquidus), °C 1480
1430
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 10
15
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 80
13
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 190
39
Embodied Water, L/kg 290
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 440
160 to 1580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 28
22 to 37
Strength to Weight: Bending, points 24
21 to 29
Thermal Diffusivity, mm2/s 2.7
4.1
Thermal Shock Resistance, points 29
14 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0.030 to 0.1
0 to 0.030
Chromium (Cr), % 20 to 23
16 to 18
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 5.0
70.7 to 78
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
6.0 to 8.0
Niobium (Nb), % 3.2 to 4.2
0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.4
0