MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. EN 1.4125 Stainless Steel

EN 2.4856 nickel belongs to the nickel alloys classification, while EN 1.4125 stainless steel belongs to the iron alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is EN 1.4125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
19
Fatigue Strength, MPa 280
300
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
77
Shear Strength, MPa 570
500
Tensile Strength: Ultimate (UTS), MPa 880
800
Tensile Strength: Yield (Proof), MPa 430
470

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 1000
870
Melting Completion (Liquidus), °C 1480
1430
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 10
15
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.0
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 14
2.3
Embodied Energy, MJ/kg 190
32
Embodied Water, L/kg 290
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
130
Resilience: Unit (Modulus of Resilience), kJ/m3 440
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 28
29
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 2.7
4.1
Thermal Shock Resistance, points 29
29

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0.030 to 0.1
1.0 to 1.2
Chromium (Cr), % 20 to 23
16 to 18
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 5.0
78 to 82.7
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0.4 to 0.8
Nickel (Ni), % 58 to 68.8
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.4
0