MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. EN 1.4317 Stainless Steel

EN 2.4856 nickel belongs to the nickel alloys classification, while EN 1.4317 stainless steel belongs to the iron alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is EN 1.4317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
17
Fatigue Strength, MPa 280
380
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
76
Tensile Strength: Ultimate (UTS), MPa 880
860
Tensile Strength: Yield (Proof), MPa 430
630

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 1000
770
Melting Completion (Liquidus), °C 1480
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 10
26
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 80
10
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 14
2.4
Embodied Energy, MJ/kg 190
33
Embodied Water, L/kg 290
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
130
Resilience: Unit (Modulus of Resilience), kJ/m3 440
1010
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 28
31
Strength to Weight: Bending, points 24
26
Thermal Diffusivity, mm2/s 2.7
7.0
Thermal Shock Resistance, points 29
30

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0.030 to 0.1
0 to 0.060
Chromium (Cr), % 20 to 23
12 to 13.5
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 5.0
78.7 to 84.5
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0 to 0.7
Nickel (Ni), % 58 to 68.8
3.5 to 5.0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.025
Titanium (Ti), % 0 to 0.4
0