MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. EN AC-21000 Aluminum

EN 2.4856 nickel belongs to the nickel alloys classification, while EN AC-21000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
100
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 28
6.7
Fatigue Strength, MPa 280
100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 880
340
Tensile Strength: Yield (Proof), MPa 430
240

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1480
670
Melting Onset (Solidus), °C 1430
550
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 10
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 80
11
Density, g/cm3 8.6
3.0
Embodied Carbon, kg CO2/kg material 14
8.0
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
21
Resilience: Unit (Modulus of Resilience), kJ/m3 440
390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 28
32
Strength to Weight: Bending, points 24
36
Thermal Diffusivity, mm2/s 2.7
49
Thermal Shock Resistance, points 29
15

Alloy Composition

Aluminum (Al), % 0 to 0.4
93.4 to 95.5
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
4.2 to 5.0
Iron (Fe), % 0 to 5.0
0 to 0.35
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0 to 0.050
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.4
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1