MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. CC491K Bronze

EN 2.4856 nickel belongs to the nickel alloys classification, while CC491K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is CC491K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
73
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 880
260
Tensile Strength: Yield (Proof), MPa 430
120

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1480
980
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 440
370
Thermal Conductivity, W/m-K 10
71
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
15

Otherwise Unclassified Properties

Base Metal Price, % relative 80
31
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 14
3.1
Embodied Energy, MJ/kg 190
51
Embodied Water, L/kg 290
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
27
Resilience: Unit (Modulus of Resilience), kJ/m3 440
67
Stiffness to Weight: Axial, points 13
6.7
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
8.1
Strength to Weight: Bending, points 24
10
Thermal Diffusivity, mm2/s 2.7
22
Thermal Shock Resistance, points 29
9.3

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
81 to 87
Iron (Fe), % 0 to 5.0
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0 to 2.0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0 to 0.1
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
4.0 to 6.0