MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. C17510 Copper

EN 2.4856 nickel belongs to the nickel alloys classification, while C17510 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
5.4 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
44
Shear Strength, MPa 570
210 to 500
Tensile Strength: Ultimate (UTS), MPa 880
310 to 860
Tensile Strength: Yield (Proof), MPa 430
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 1000
220
Melting Completion (Liquidus), °C 1480
1070
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 10
210
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 80
49
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 14
4.2
Embodied Energy, MJ/kg 190
65
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 440
64 to 2410
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
9.7 to 27
Strength to Weight: Bending, points 24
11 to 23
Thermal Diffusivity, mm2/s 2.7
60
Thermal Shock Resistance, points 29
11 to 30

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0 to 0.3
Copper (Cu), % 0 to 0.5
95.9 to 98.4
Iron (Fe), % 0 to 5.0
0 to 0.1
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
1.4 to 2.2
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0
Residuals, % 0
0 to 0.5