MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. C36000 Brass

EN 2.4856 nickel belongs to the nickel alloys classification, while C36000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is C36000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
5.8 to 23
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 79
39
Shear Strength, MPa 570
210 to 310
Tensile Strength: Ultimate (UTS), MPa 880
330 to 530
Tensile Strength: Yield (Proof), MPa 430
140 to 260

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1480
900
Melting Onset (Solidus), °C 1430
890
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 80
23
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 14
2.6
Embodied Energy, MJ/kg 190
45
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
25 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 440
89 to 340
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 28
11 to 18
Strength to Weight: Bending, points 24
13 to 18
Thermal Diffusivity, mm2/s 2.7
37
Thermal Shock Resistance, points 29
11 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
60 to 63
Iron (Fe), % 0 to 5.0
0 to 0.35
Lead (Pb), % 0
2.5 to 3.7
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
32.5 to 37.5
Residuals, % 0
0 to 0.5