MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. C61300 Bronze

EN 2.4856 nickel belongs to the nickel alloys classification, while C61300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is C61300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
34 to 40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 570
370 to 390
Tensile Strength: Ultimate (UTS), MPa 880
550 to 580
Tensile Strength: Yield (Proof), MPa 430
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 1000
210
Melting Completion (Liquidus), °C 1480
1050
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 440
420
Thermal Conductivity, W/m-K 10
55
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 80
29
Density, g/cm3 8.6
8.5
Embodied Carbon, kg CO2/kg material 14
3.0
Embodied Energy, MJ/kg 190
49
Embodied Water, L/kg 290
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 440
230 to 410
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 28
18 to 19
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 2.7
15
Thermal Shock Resistance, points 29
19 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.4
6.0 to 7.5
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
88 to 91.8
Iron (Fe), % 0 to 5.0
2.0 to 3.0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.5
0 to 0.2
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0 to 0.15
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.2 to 0.5
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2