MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. C61500 Bronze

EN 2.4856 nickel belongs to the nickel alloys classification, while C61500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is C61500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
3.0 to 55
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
42
Shear Strength, MPa 570
350 to 550
Tensile Strength: Ultimate (UTS), MPa 880
480 to 970
Tensile Strength: Yield (Proof), MPa 430
150 to 720

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 1000
220
Melting Completion (Liquidus), °C 1480
1040
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 440
430
Thermal Conductivity, W/m-K 10
58
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 80
29
Density, g/cm3 8.6
8.4
Embodied Carbon, kg CO2/kg material 14
3.2
Embodied Energy, MJ/kg 190
52
Embodied Water, L/kg 290
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
27 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 440
100 to 2310
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 28
16 to 32
Strength to Weight: Bending, points 24
16 to 26
Thermal Diffusivity, mm2/s 2.7
16
Thermal Shock Resistance, points 29
17 to 34

Alloy Composition

Aluminum (Al), % 0 to 0.4
7.7 to 8.3
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
89 to 90.5
Iron (Fe), % 0 to 5.0
0
Lead (Pb), % 0
0 to 0.015
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
1.8 to 2.2
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0
Residuals, % 0
0 to 0.5