MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. C68800 Brass

EN 2.4856 nickel belongs to the nickel alloys classification, while C68800 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
2.0 to 36
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 79
41
Shear Strength, MPa 570
380 to 510
Tensile Strength: Ultimate (UTS), MPa 880
570 to 890
Tensile Strength: Yield (Proof), MPa 430
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1480
960
Melting Onset (Solidus), °C 1430
950
Specific Heat Capacity, J/kg-K 440
400
Thermal Conductivity, W/m-K 10
40
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
18
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
20

Otherwise Unclassified Properties

Base Metal Price, % relative 80
26
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 14
2.8
Embodied Energy, MJ/kg 190
48
Embodied Water, L/kg 290
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
16 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 440
710 to 2860
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 28
19 to 30
Strength to Weight: Bending, points 24
19 to 25
Thermal Diffusivity, mm2/s 2.7
12
Thermal Shock Resistance, points 29
19 to 30

Alloy Composition

Aluminum (Al), % 0 to 0.4
3.0 to 3.8
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0.25 to 0.55
Copper (Cu), % 0 to 0.5
70.8 to 75.5
Iron (Fe), % 0 to 5.0
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
21.3 to 24.1
Residuals, % 0
0 to 0.5