MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. C69300 Brass

EN 2.4856 nickel belongs to the nickel alloys classification, while C69300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
8.5 to 15
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 79
41
Shear Strength, MPa 570
330 to 370
Tensile Strength: Ultimate (UTS), MPa 880
550 to 630
Tensile Strength: Yield (Proof), MPa 430
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 330
240
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1480
880
Melting Onset (Solidus), °C 1430
860
Specific Heat Capacity, J/kg-K 440
400
Thermal Conductivity, W/m-K 10
38
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 80
26
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 190
45
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 440
400 to 700
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 28
19 to 21
Strength to Weight: Bending, points 24
18 to 20
Thermal Diffusivity, mm2/s 2.7
12
Thermal Shock Resistance, points 29
19 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
73 to 77
Iron (Fe), % 0 to 5.0
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0 to 0.1
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0.040 to 0.15
Silicon (Si), % 0 to 0.5
2.7 to 3.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
18.4 to 24.3
Residuals, % 0
0 to 0.5