MakeItFrom.com
Menu (ESC)

EN 2.4856 Nickel vs. C90300 Bronze

EN 2.4856 nickel belongs to the nickel alloys classification, while C90300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4856 nickel and the bottom bar is C90300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 880
330
Tensile Strength: Yield (Proof), MPa 430
150

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1480
1000
Melting Onset (Solidus), °C 1430
850
Specific Heat Capacity, J/kg-K 440
370
Thermal Conductivity, W/m-K 10
75
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
12

Otherwise Unclassified Properties

Base Metal Price, % relative 80
33
Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 14
3.4
Embodied Energy, MJ/kg 190
56
Embodied Water, L/kg 290
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
59
Resilience: Unit (Modulus of Resilience), kJ/m3 440
110
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
11
Strength to Weight: Bending, points 24
12
Thermal Diffusivity, mm2/s 2.7
23
Thermal Shock Resistance, points 29
12

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
86 to 89
Iron (Fe), % 0 to 5.0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.8
0 to 1.0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.6