MakeItFrom.com
Menu (ESC)

EN 2.4878 Nickel vs. 5026 Aluminum

EN 2.4878 nickel belongs to the nickel alloys classification, while 5026 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4878 nickel and the bottom bar is 5026 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 13 to 17
5.1 to 11
Fatigue Strength, MPa 400 to 410
94 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 750 to 760
150 to 180
Tensile Strength: Ultimate (UTS), MPa 1210 to 1250
260 to 320
Tensile Strength: Yield (Proof), MPa 740 to 780
120 to 250

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1030
210
Melting Completion (Liquidus), °C 1370
650
Melting Onset (Solidus), °C 1320
510
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 10
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 370
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 180
15 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 1540
100 to 440
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 41 to 42
26 to 32
Strength to Weight: Bending, points 31
33 to 37
Thermal Diffusivity, mm2/s 2.8
52
Thermal Shock Resistance, points 37 to 39
11 to 14

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
88.2 to 94.7
Boron (B), % 0.010 to 0.015
0
Carbon (C), % 0.030 to 0.070
0
Chromium (Cr), % 23 to 25
0 to 0.3
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0.1 to 0.8
Iron (Fe), % 0 to 1.0
0.2 to 1.0
Magnesium (Mg), % 0
3.9 to 4.9
Manganese (Mn), % 0 to 0.5
0.6 to 1.8
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 43.6 to 52.2
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
0.55 to 1.4
Sulfur (S), % 0 to 0.0070
0
Tantalum (Ta), % 0 to 0.050
0
Titanium (Ti), % 2.8 to 3.2
0 to 0.2
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0.030 to 0.070
0 to 0.3
Residuals, % 0
0 to 0.15

Comparable Variants